Задача о расстоянии Дамерау-Левенштейна

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Расстояние Дамерау — Левенштейна (Damerau — Levenshtein distance) между двумя строками, состоящими из конечного числа символов — это минимальное число операций вставки, удаления, замены одного символа и транспозиции двух соседних символов, необходимых для перевода одной строки в другую.

Является модификацией расстояния Левенштейна, отличается от него добавлением операции перестановки.

Расстояние Дамерау — Левенштейна является метрикой. (Предполагаем, что цены операций таковы, что выполнено правило треугольника: если две последовательные операции можно заменить одной, то это не ухудшает общую цену.)


Содержание

 [убрать

[править] Практическое применение

Расстояние Дамерау — Левенштейна, как и метрика Левенштейна, является мерой "схожести" двух строк. Алгоритм его поиска находит применение в реализации нечёткого поиска, а также в биоинформатике (сравнение ДНК), несмотря на то, что изначально алгоритм разрабатывался для сравнения текстов, набранных человеком (Дамерау показал, что 80% человеческих ошибок при наборе текстов составляют перестановки соседних символов, пропуск символа, добавление нового символа, и ошибка в символе. Поэтому метрика Дамерау — Левенштейна часто используется в редакторских программах для проверки правописания).

[править] Упрощённый алгоритм

Не решает задачу корректно, но бывает полезен на практике.

Здесь и далее будем использовать следующие обозначения: S и T — строки, между которыми требуется найти расстояние Дамерау — Левенштейна; M и N — их длины соответственно.

Рассмотрим алгоритм, отличающийся от алгоритма поиска расстояния Левенштейна одной проверкой (храним матрицу D, где D(i, j) — расстояние между префиксами строк: первыми i символами строки S и первыми j символами строки T). Рекуррентное соотношение имеет вид:

Ответ на задачу — D(M,N) , где

D(i, j) = \left\{\begin{array}{lllc} min(A, D(i - 2, j - 2) + transposeCost)&&;i > 1,\ j > 1,\ S[i] = T[j-1],\ S[i-1] = T[j]\\ A&&;\text{otherwise}\\ \end{array}\right.

A = \left\{\begin{array}{llcl} 0&&;&i = 0,\ j = 0\\ i&&;&j = 0,\ i > 0\\ j&&;&i = 0,\ j > 0\\ D(i - 1, j - 1)&&;&S[i] = T[j]\\ \rm{min}(\\ &D(i, j - 1) + insertCost\\ &D(i - 1, j) + deleteCost&;&j > 0,\ i > 0,\ S[i] \ne T[j]\\ &D(i - 1, j - 1) + replaceCost\\ ) \end{array}\right.

Таким образом для получения ответа необходимо заполнить матрицу D, пользуясь рекуррентным соотношением. Сложность алгоритма: O\left (M \cdot N \right ). Затраты памяти: O\left (M \cdot N \right).

Псевдокод алгоритма:

int DamerauLevenshteinDistance(char S[1..M], char T[1..N])
   int d[0..M, 0..N]
   int i, j, cost
     
   // База динамики
   for i from 0 to M
      d[i, 0] = i
   for j from 1 to N
      d[0, j] = j
    
   for i from 1 to M
      for j from 1 to N           
         // Стоимость замены
         if S[i] == T[j] then replaceCost = 0
            else replaceCost = 1
          
         d[i, j] = minimum(
                              d[i-1, j  ] + deleteCost,           // удаление
                              d[i  , j-1] + insertCost,           // вставка
                              d[i-1, j-1] + replaceCost           // замена
                          )
          if(i > 1 and j > 1 
                   and S[i] == T[j-1] 
                   and S[i-1] == T[j]) then
             d[i, j] = minimum(
                                  d[i, j],
                                  d[i-2, j-2] + transposeCost // транспозиция
                              )
    
   return d[M, N]

Контрпример: S = 'CA' и T = 'ABC'. Расстояние Дамерау — Левенштейна между строками равно 2 (CA \rightarrow AC \rightarrow ABC), однако функция приведённая выше возвратит 3. Дело в том, что использование этого упрощённого алгоритма накладывает ограничение: любая подстрока может быть редактирована не более одного раза. Поэтому переход AC \rightarrow ABC невозможен, и последовательность действий такая: (CA \rightarrow A \rightarrow AB \rightarrow ABC).

Условие многих практических задач не предполагает многократного редактирования подстрок, поэтому часто достаточно упрощённого алгоритма. Ниже представлен более сложный алгоритм, который корректно решает задачу поиска расстояния Дамерау — Левенштейна.

[править] Корректный алгоритм

В интересах краткости положим insertCost = deleteCost = replaceCost = transposeCost = 1. При иной формулировке задачи формулы легко обобщаются на любой случай.

Сложность алгоритма: O\left (M \cdot N \cdot \max(M, N) \right ). Затраты памяти: O\left (M \cdot N \right). Однако скорость работы алгоритма может быть улучшена до O\left (M \cdot N \right).

В основу алгоритма положена идея динамического программирования по префиксу. Будем хранить матрицу D[0..M + 1][0..N + 1], где D[i + 1][j + 1] — расстояние Дамерау — Левенштейна между префиксами строк S и T, длины префиксов — i и j соответственно.

Будем заполнять матрицу следующим образом, используя рекуррентное соотношение, описанное ниже:

for i from 0 to M
   for j from 0 to N
      вычислить D(i + 1, j + 1);
return D(m + 1, n + 1);

Для учёта транспозиции потребуется хранение следующей информации. Инвариант:

lastPosition[x] — индекс последнего вхождения x в S

last — на i-й итерации внешнего цикла индекс последнего символа T: T[last] = S[i]

Тогда если на очередной итерации внутреннего цикла положить: i' = lastPosition[T[j]],\ j' = last, то

D(i, j) = min(A, D(i', j') + (i - i' - 1) + 1 + (j - j' - 1))(*)

, где

A = \left\{\begin{array}{llcl} 0&&;&i = 0,\ j = 0\\ i&&;&j = 0,\ i > 0\\ j&&;&i = 0,\ j > 0\\ D(i - 1, j - 1)&&;&S[i] = T[j]\\ \rm{min}(\\ &D(i, j - 1) + 1\\ &D(i - 1, j) + 1&;&j > 0,\ i > 0,\ S[i] \ne T[j]\\ &D(i - 1, j - 1) + 1\\ ) \end{array}\right.

Доказательства требует лишь формула (*), смысл которой — сравнение стоимости перехода без использования транспозиции (A) со стоимостью перехода, включающего в число операций транспозицию; остальные формулы обосновываются так же, как и в доказательстве алгоритма Вагнера — Фишера. Но действительно, при редактировании подпоследовательности несколько раз всегда существует оптимальная последовательность операций одного из двух видов:

  • Переставить местами соседние символы, затем вставить некоторое количество символов между ними;
  • Удалить некоторое количество символов, а затем переставить местами символы, ставшие соседними.

Тогда если символ S[i] встречался в T[1]..T[j] на позиции j', а символ T[j] встречался в S[1]..S[i] на позиции i'; то T[1]..T[j] может быть получена из S[1]..S[i] удалением символов S[i' + 1]..S[i - 1], транспозицией ставших соседними S[i'] и S[i] и вставкой символов T[j' + 1]..T[j - 1]. Суммарно на это будет затрачено D(i', j') + (i - i' - 1) + 1 + (j - j' - 1) операций, что описано в (*). Поэтому мы выбирали оптимальную последовательность операций, рассматрев случай с транспозицией и без неё.

Псевдокод алгоритма:

int DamerauLevenshteinDistance(char S[1..M], char T[1..N])
   // Обработка крайних случаев
   if (S == "") then
      if (T == "") then
         return 0
      else
         return N
   else if (T == "") then
      return M
   int D[0..M + 1, 0..N + 1]          // Динамика
   int INF = M + N                    // Большая константа
    
   // База индукции
   D[0, 0] = INF;
   for i from 0 to M
      D[i + 1, 1] = i
      D[i + 1, 0] = INF
   for j from 0 to N
      D[1, j + 1] = j
      D[0, j + 1] = INF
    
   int lastPosition[0..количество различных символов в S и T]
   //для каждого элемента C алфавита задано значение lastPosition[C] 
    
   foreach (char Letter in (S + T))
      if Letter не содержится в lastPosition
         добавить Letter в lastPosition
         lastPosition[Letter] = 0
    
   for i from 1 to M
      int last = 0
      for j from 1 to N
         int i' = lastPosition[T[j]]
         int j' = last
         if S[i] == T[j] then
            D[i + 1, j + 1] = D[i, j]
            last = j
         else
            D[i + 1, j + 1] = minimum(D[i, j], D[i + 1, j], D[i, j + 1]) + 1
         D[i + 1, j + 1] = minimum(D[i + 1, j + 1], D[i' + 1, j' + 1] + (i - i' - 1) + 1 + (j - j' - 1))
      lastPosition[S[i]] = i
     
   return D[M + 1, N + 1]

[править] См. также

[править] Cсылки

Личные инструменты
Пространства имён
Варианты
Действия
Навигация
Инструменты